Not-So-CLEVR: Visual Relations Strain Feedforward Neural Networks
نویسندگان
چکیده
The robust and efficient recognition of visual relations in images is a hallmark of biological vision. Here, we argue that, despite recent progress in visual recognition, modern machine vision algorithms are severely limited in their ability to learn visual relations. Through controlled experiments, we demonstrate that visual-relation problems strain convolutional neural networks (CNNs). The networks eventually break altogether when rote memorization becomes impossible such as when the intra-class variability exceeds their capacity. We further show that another type of feedforward network, called a relational network (RN), which was shown to successfully solve seemingly difficult visual question answering (VQA) problems on the CLEVR datasets, suffers similar limitations. Motivated by the comparable success of biological vision, we argue that feedback mechanisms including working memory and attention are the key computational components underlying abstract visual reasoning.
منابع مشابه
Not-so-clevr: Visual Relations Strain Feed-
The robust and efficient recognition of visual relations in images is a hallmark of biological vision. Here, we argue that, despite recent progresses in visual recognition, modern machine vision algorithms are severely limited in their ability to learn visual relations. Through controlled experiments, we demonstrate that visual-relation problems strain convolutional neural networks (CNNs). The ...
متن کاملNot-so-clevr: Visual Relations Strain Feed-
The robust and efficient recognition of visual relations in images is a hallmark of biological vision. Here, we argue that, despite recent progress in visual recognition, modern machine vision algorithms are severely limited in their ability to learn visual relations. Through controlled experiments, we demonstrate that visual-relation problems strain convolutional neural networks (CNNs). The ne...
متن کاملA simple neural network module for relational reasoning
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset...
متن کاملبررسی کارایی روشهای مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
متن کاملEvent-Related Features in Feedforward Neural Networks Contribute to Identifying Causal Relations in Discourse
Causal relations play a key role in information extraction and reasoning. Most of the times, their expression is ambiguous or implicit, i.e. without signals in the text. This makes their identification challenging. We aim to improve their identification by implementing a Feedforward Neural Network with a novel set of features for this task. In particular, these are based on the position of even...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.03390 شماره
صفحات -
تاریخ انتشار 2018